
On the path integral in imaginary Lobachevsky space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 3475

(http://iopscience.iop.org/0305-4470/27/10/023)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 27 (1994) 3475-3489. printed in the UK 

On the path integral in imaginary Lobachevsky space 

Christian Groschet 
Insiitut f i r  Theoretische Physik. Universitiit Hamburg, Luruper Chaussee 149, 22 761 Hamburg, 
Germany 

Received 17 January 1994 

Abstract. The path integral on the single-sheeied hyperboloid, i.e. in D-dimensional imaginary 
Lobachevsky space, is evaluated. A potential problem which we call the ‘Kepler problem’, and 
the case of a wnsiant magnetic field are also discussed. 

1. Introduction 

Motion on spaces with constant curvature, positive as well as negative, is of particular 
interest and appears in several topics in theoretical physics. Let us, for example, mention 
string theory where the perturbative expansion la Polyakov [I]  leads to the consideration 
of determinants of Laplacians on Riemann surfaces of arbitrary genus, a theory where 
the underlying space is the Poincar6, respectively Lobachevsky space, a space of constant 
negative curvature. 

Another example is the Kepler problem in spaces of constant curvature [Z, 31. Here one 
is interested in the comparison of the symmetry properties of this problem, where one finds, 
for example, that the coordinate systems which separate the Kepler problem in spaces of 
constant curvature are only two, namely the (pseudo-) spherical and the (pseudo-) conical, 
whereas in flat space there are four [4]. 

The evaluations of propagators and its short-time behaviour, and Green functions are also 
important in cosmological models (cf e.g. [51). They appear in several models derived from 
the Wheeler-DeWitt equation and quantum gravity, respectively, and lead in a natural way 
to models, respectively spaces, with constant curvature. As the simplest case, one can study 
the free motion in these spaces. Here, several models can appear in the case of constant 
negative curvature: the single-sheeted and the two-sheeted hyperboloid. Most simply, 
they are studied in the two-dimensional case. The two-sheeted hyperboloid is a particular 
realization of the Poincark plane, where only one sheet has been taken, whereas the single- 
sheeted has different properties and has not been studied in such great detail. However, some 
contributions exist, mainly by Gel’fand, Graev and Vilenkin who call this space imaginary 
Lobachevsky space [HI and have studied its geometrical structure and group-theoretical 
properties. It has the peculiarity that the distance r of two points defined by cosh kr (k is the 
curvature) may be positive and imaginary because cosh kr E [0, CO), i.e. it is a space-like 
set, in comparison to the usual two-sheeted hyperboloid, also called ‘pseudosphere’, which 
is a time-like set. From the point of view of special relativity, Lobachevskian models are of 
interest because the velocity space, say, possesses a constant negative curvature (equal to 
1/c2), and the single-sheeted hyperboloid in particular corresponds to the unphysical region 
of the variables. 
t Supported by Deutsche Fomhungsgemeinsch& under contract number GR 1031/2-1. 
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In this paper I want to study the path integral on the (D- 1)-dimensional single-sheeted 
hyperboloid, denoted in the following by 7.1::' which is done in section 2. This special 
system was not subject to path integration until now. The path integral on the pseudosphere 
has been intensively studied in 13.9-1 I], with its higher-dimensional generalizations in 
[13, 141. In comparison to this usual pseudosphere we will find that in the case of 'Hi:' 
bound states can appear, depending on the angular-momentum number, which is not possible 
for the quantum motion on the pseudosphere. 

As we will see in section 3, a potential problem on the single-sheeted hyperboloid can 
be discussed, which will be called the 'Kepler problem' on the single-sheeted hyperboloid. 

In section 4, the case of a constant magnetic field on 7-I::' will be discussed, section 
5 contains some concluding remarks, and in the appendix the path integral identity for the 
modified Poschl-Teller potential is given. 

2. The path integral 

For simplicity we first consider the simplest case, i.e. D = 3. We start with the equation 
for the two-dimensional singlesheeted hyperboloid 7.1:; (Ilk = R > 0) 

(1) 2 2  (x, I) = x0 - xI - ~ 2 "  = - R 2 .  

We introduce pseudo-spherical polar coordinates on 7.1:; 

x g =  Rsinhr  x1 = Rcoshrsin$5 x2 = Rcoshrcos$5 (2) 

where 5 E (-03, 03) and $5 E [0,2r). The addition theorem on the single-sheeted 
hyperboloid 7.1:; has the form (I, E 7-I!?;) 

El ' 1 2  cosh kr = 
1x11 * 1x21 

= (sinh r~ sinh rz - cosh r1 cosh r2cos& - $51)) 

(3) 

(4) 

We find for the metric: (gob) = R'diag(1, -cosh2r), and therefore g = 4- = 
RZ cosh r. According to the canonical formalism 114-201 we construct the path integral on 
7.1:; as follows (T = t" - t ' ) :  

0)  
K"Fi)(xj', x i ,  x;, x;. x;, x;;  T) Ez K(X-J(r",  r', $5", $5'; T) 

x,(I")=< X,(I")* x , ( I " k ;  

- - 1 Dxl ( t )  1 DxZ(t) 1 Dx&) exp [ 1'" (xy - .t; - x:)di] (5) 
I' 

xl(:')=x; .rz(r')=x; x , ( f ' ) d 3  
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i(f")=i'' $(I")=$" 

3471 

- - / coshrDr(t) / D$(f) 
- R2 

r(f')=r' 0(1'")=@' 

t2 - cosh' rd') - 7 h2 (1 + 7)] 1 
dt } I i  J ' " [ ; R  ( 8m R cosh r h I' 

xexp - 
(7 ) 

Here are E = T / N ,  q j  = q(f' + j6). f 2 ( q j )  = f(qj)f(qj-l) for any function of the 
coordinates r and 4, and j = 0, . . . , N ,  Aqj = q j  - qj-1, and we  interpret the limit 
N + CO as equivalent with E + 0, T fixed. Note that due to the indefinite metric the 
factors 'i' in the 'measure term' cancel each other [lo]. The corresponding short-time 
propagator is given by 

- 2  - cosh T,A'$~) - 

Note that the preexponential factor does not depend on R. The $-path integration can be 
separated [22] immediately and we obtain 

KImPI' (5"- r': T) given by 

which is a usual one-dimensional path integral. This path integral has the form of the 
special case of the modified Poschl-Teller potential as sketched in the appendix. Therefore, 
we can write down the solution of the path integral on the single-sheeted hyperboloid 
(n = O , l , .  .., N M  < 111 - i): 

exp 1; I "  [ T R ~ ( ~ ~  -cosh 2 ?$ ' 2  ) - - 8 m R 2 ( 1  h2 '&)Idf] 
eLI(&,-@) 

= ( - cosh r' cosh r")-"' 2 - 
2ir I=-- 
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eilW-4') 
= ( - cosh r'cosh r")-"' 5 2 x ~ ~  

1=-m 

, (12) 1 
L 

dp psinhnp Plt-i(tanh r")Pli$(tanh 5') 

t.1 jm 2 -m h2(p' + 1/4)/2mR2 - E cos2xI i- sinh'np 

Wavefunctions and the energy spechvm are easily read off from the spectral expansion (12). 
Note that for 1 # 0 there are bound states. The generalization to higher dimensions can be 
done in a straightforward way, by replacing the circular wavefunctions by the hyperspherical 
harmonics $(SZ), and the quantum number I E Z by the corresponding principle quantum 
number I E No, including the appropriate changes in the effective Lagrangian, and with 
the prefactor replaced by In order to to this we introduce the (pseudo-bispherical) 
coordinate system [6-91 

xo = R sinh r 
X I  = RcoShsC0Sb'~-2 
x2 = RcoshrsinB~-2cosb'~-3 

X D - ~  = RCOShrSinBD-2...COS&COS4 

xD-  = R cosh r sin B D - ~ .  . . cos& sin4 

where 5 E (-w,w), 01 = 4 E [ O , ~ R ) ,  and .9k E [O,n), k = 2, ..., D - 2. The 
metric tensor on the (D - 1)-dimensional single-sheeted hyperboloid is given by: (gab) = 
R2diag(l, -coshZ 5 ,  - coshz r sin2 OD-*, . . . , -cosh25 , , .sin 02) (a, b = I ,  , . . , D - 1). 
Therefore, we obtain for the Hamiltonian on 'Hi:', 

2 

1 
cosh' 5 . .  . sin' Oz a$ (14) 

with the quantum potential 

cosh2 r . . .sin' BZ 
1 

AV(r, ( e ] )  = ~ (D - 2)2+ - +." + 
8mR2 cosh' r 

(IS) denotes the set of variables Ok (k = 1, . . . , D - Z).) Furthermore, (g = det(g.b) = 
coshD-' r n,, (sin&)'-'), D-2 . 
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Thus we obtain for the (Lagangian) path integral on N-, ( D )  (I = (xo,. . . , X D - I ) ) ,  

~ ( x - 1  )(If/, T) ~(@)( t / / ,  5, {e"), (ef); T) (Dl 

xexp - ~ ~ ~ l ( ~ , - l , ~ j . ~ ~ j - ~ ~ , { ~ j ) )  - ~ A v ( q , ( e j D ]  . (18) 
( i  h j=l 1 

&I is the classical Lagrangian 

(19) mR2 [ t ~  - cosh 2 t eD-2 ' 2  - . . . - (cosh' r . . . sin2e2)62] 

I .  - - e [ A 2 r /  -cosh 2 2  r jA .9-2,j-.. .-(cosh 2 ~ . . . S ~ I I ~ B ~ , ~ ) A ~ Q I ,  

bl(t, t ,  {e ) ,  ( 8 ) )  = - 2 

and its counterpart on the lattice reads 

G ( Z j - 1 ,  rJ, {ej.-d* Cej)) 
A - A 

2€2 
(20) 

dS2 = ~ ~ ~ 2 ( s i n B k ) K - 1 d ~ k  is the ( D  - 2)-dimensional surface element on the unit-sphere 
S(D-2) .  Note again that the pre-exponential factor in the short-time kernel does not depend 
on R.  

Due to the very singular nature of AV(s,  ( 8 ) )  this path integral is, as it stands, not 
tractable. However, we can use a path-integral identity (based on a method developed 
in [17, 181) already derived in 113, 201 to simplify the path integration significantly and 
separate the angular variables 6D-Z.  . . . , q5 from the hyperbolic coordinate r ,  I introduce 
the quantity @I'm'') defined by 

(21) 

which is actually the addition theorem on the S(D-2)-sphere and cos @['.") = a'. Q", where 
QI'") are unit vectors on the S(D-2)-sphere. Using the result of [20] the following path- 
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integral identity can be achieved (replace RZ = r; = -cosh' rj in (2.27) in [20])  

- 11 2_ 

A'OD-Z.~ + . . . + (sin2 8D-2,j . . . sinze,,j)A2+j 

imRZ 
= exp 1 - Efi COShzrj(l - C O S @ ~ - ~ J )  .. 

1 1 +...+ . '  
sinZ B D - Z j  

Here I have used the symbol &following DeWitt [16]-to denote 'equivalence as far as 
use in the path integral is concerned'. The highly singular terms cancel and I obtain 

sin 8D-Z.i  , . . sin'8z.j 
ich (1 + 

8mR2 cosh' rj 
+ 

r(P)=r" n(f")=n" 

K"!S))(t", r', (e"), [e'); T )  = / coshD-'rDr(f) / D W )  
W)=*' n(r')=n' 

Now expanding the exponential according to 122, p 9801, 

where C;(x) is a Gegenbauer polynomial, together with 123, chapter X I ]  

where the Sr(C2) are the real hyper-spherical harmonics of degree I with unit vector S2 on 
the ScD-')-sphere, I E NO, a(D) = 2 z D p / r ( D / 2 )  is the volume of the D-dimensional 
unit-sphere S(D- l ) ,  and p = 1 , .  . . , M, M = (21 + D - 2)(1+ D - 3 ) ! / I ! ( D  - 3)! .  Thus 
for U = ( D  - 3 ) / 2  in (24). i.e. on ScD-') 

The angular variables in the path integral on the (D - 1)-dimensional single-sheeted 
hyperboloid 7-1:;) can be therefore separated in a straightforward way and we obtain 

~ ( ~ ~ ~ ' ) ( r ~ ~ ,  r ,  (e''], (0'1; T) 
R I - D  

(-cosh r'cosh z")(~-')/' 
- - 



LetussetD =24+4withd=O, 1, .... Then(f+(D-3)/2)z-$ =(I+d)[(l+d)+l]and 
we see that in this case the radial propagator on 'MLy) yields the propagator of a reflectionless 
potential [25]. Hence, we can explicitly state for the propagator ( N  = I + d )  

{of], rn, r'; T) 

(2N - n) !  
n! 

x ( N - n )  Pi-N(tanh r')Pi-N(tanh 5'') 

N-1 

2mR2 4 
(2N - n) !  

II! 
x ( N  - n)  Pi-N(tanh r')P[-"(tanh 5") 
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where in the resummation use has been made of the integral representations [22, p 4971, 
%/8*%y > 0, a > 0: 

4 2sinhay + e-'"erf ( y f i  - G) - eaYerf(yfi + L)] 2 f l  

For the radial Green's function, respectively, I obtain 

( N  - n)(2N - n)!  1 
-AZ(N - n)2/2mR2 - E n !  

-P~-N(tanhr')p~-N(tanh r") 

Here use has been made of the Laplace-Fourier transformations 125, p 1771: 

Equation (30) represents the spectral expansion, where wavefunctions and energy spectra 
can be read off. 

3. The 'Kepler problem' 

In the path integral (28) the following potential on 311;) is easily incorporated: 

where rz = CL;' xi' > RZ. For D = 4 (34) has the structure of a Kepler problem in a 
space of constant curvature [2, 31. In our case of the single-sheeted hyperboloid we want 
to keep this notion for every dimension D, and we will see that a similar structure familiar 
from the usual Coulomb problem in the energy spectrum will in fact arise, however, with 
some significant different features. Furthermore, the potential (35) is not singular for any 
value of T E R. 
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Implementing the potential (35) in the radial path integral (28) yields 

+ - 4' tanh r ]  di] 
R 

Equation (36) has the form of the path integral for the Rosen-Morse potential 

+Atanh* B V ( x )  = - 
cosh'x/R R ( 3 7 )  

(A, B,  R constants, x E R) which has been discussed in [27,  281 by means of the path 
integral of the modified P6schl-Teller potential, cf the appendix. Identifying 

( I  + $(D - 2))' - t X 
B = h -  r = -  

R 2mR2 R 
4' A = - -  

gives the path integral solution 

Here are L B  = 1 + (D - 4) / 2 ,  ml.2 = R ( 4 - 5  d m ) / f t ,  and r<., 
the smaller/ larger of r', r", respectively. The wavefunctions and the energy-spectrum are 
given by (s with a = h2/mq2  
the Bohr radius, kl = $(I + s), k2 = ;[I + f ( x  - 2n - 1 )  - 2mq2R/( f t ( s  - 2n - l))], 
U = f ( l  + tanh r),  note kz - 

U +  D - 3, n = 0,. . . , Nu < I + ( D  - 4 ) / 2  - 

> 0) 
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1 ( I  + $(D - 4) - n)’ mq4 E:,*) = - hZ + [ 2mR2 Zz(n - I - $(D - 4))’ (42) 

The wavefunctions and the energy-spect” of the continuous states are given by (k2 
’(-2$/R + h2p2/2mR2)/h > 0) . -  

1(1+ I ~ p )  K = $(I + ip), j = J2mR 
~ ( q ’ ) ( ~ )  = j v f 1 ~ ( 1  - U ) - i p / z U i ~ f i  

P.1 

x Z F I { $  + s + i ( j  - p ) ] .  f [ l  --s + i(p - p ) ] ;  I + i j ;  U) (43) 

h2pz q2 
2mR2 R Ep,i = - - - (45) 

In the limit q2 = 0 the case of (30bis easily recovered. Note that for the entire problem 
the additional ‘zero-energy’ shift .EA ) = h2(D - 2)2/8mR2 has to be taken into account, cf 
(27). We see that the energy spectrum (42) of the ‘Kepler problem’ on the single-sheeted 
hyperboloid has, in fact, a form familiar from the usual Coulomb problem in flat space, 
and in spaces of (positive and negative) constant curvature [Z, 31, respectively. However, 
in the present example the flat space limit ( R  -+ CO) does not make any sense, and the 
corresponding Hilbert space does not exist. 

4. The constant magnetic field 

Let us introduce on ‘$1 the vector-potential A 
A=(A,,A,)=iBsinhr(O,l) .  

The magnetic field is thus calculated to read as dB = (&A+ - a+A,)dr A dq5 = 
iB cosh TdT A dq5 = B which has the form (constant x volume)-form and can 
therefore be interpreted as a constant field on H”. Note the imaginaq‘ unit involved in A 
which is due to the indefinite metric of Xi:). The path integral with the vector potential A 
then has the form (b = eB/hc): 
KW!)i ,b)(s”,  T‘, 4t!,q5!; T) 

-%b sinh r )  - - 
8 r R 2  + &)Idt] ’ 
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We perform a Fourier expansion according to 
KW?!il.b)(p, 5', #', 4'; T) = __ 1 

2nRZ (- coshr'coshr" 

+2ilb-)]di} tanh r (51) 
cosh r 

which is the path integral of a barrier tunnelling potential V ( x )  = (h2/2m)(A + B tanhx/ 
coshx + C tanh'x) as discussed in 1291 (compare [30] for a detailed study of reflection and 
scattering properties) and belongs to a class of potentials called Scarf-like potentials 1311. 
We perform the coordinate transformation (1 + i sinh r ) /2  = cosh'z and obtain (M = 4m): 

J-m J 
We do not wony about the fact that this is a complex-coordinate transformation (compare 
also [2] in the treatment of the Kepler problem in a space of constant positive curvature. 
where an even more complicated coordinate transformation has been made, accompanied 
by an additional time-transformation). Due to the specific nature of the vector potential we 
have chosen, the latter path integral is a usual one-dimensional path integral with a real 
potential (e.g. C f iB = (1 i. b)'- :). Here kl = i ( 1  + ,/-) = f ( l  + 11 + bl), 
kz = i ( 1  + 11 - bl) in the notation of the appendix (the correct signs of the square roots 
follow from the vanishing of the bound state wavefunctions for x -+ fw). Therefore we 
obtain for the energy spectrum for the motion '$1 with a constant magnetic field 

We haven = 0.1,2, .  . . , NM e $ ( I l +  bl - 11 -61 - 1). For the bound-state wavefunctions 
we get (reinserting z + r )  
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and the f,’“.’)(z), z E @, are Jacobi polynomials. 

states we get for the continuous spectrum 
Rescaling the parameter p according to p + 2 p  in the p-integral for the continuous 

and the wavefunctions have the form 

(56) 
1 
2 

i sinh r - 1 
-ip, - ( I  + Il - bl - I I  + bl) - ip; 1 + I) - bl; . i s inhs+ 1 

5. Summary and discussion 

In this paper I have studied path integration on the (D - I)-dimensional single-sheeted 
hyperboloid in a conveniently chosen coordinate system of ( I ,  D - I)-dimensional pseudo- 
bispherical polar coordinates: first the two-dimensional, second its higher-dimensional 
generalization, third a potential problem, and finally the case of a constant magnetic field. 
In all cases the propagators, the Green functions, and the corresponding wavefunctions and 
energy spectra could be easily determined by the formalism. We found that in comparison to 
the (two-sheeted) pseudosphere, bound states are already allowed for the free motion on the 
single-sheeted hyperboloid, where the number of bound states is determined by the angular- 
momentum number. Similarly, as in the case of the pseudosphere [13], the hyperbolic 
plane with magnetic fields [32]. and other hyperbolic spaces 1141, a ‘zero-energy’ shift 
E r )  = A2(D - 2)’/8mR2 appeared in the energy spectra. We also found that in even 
dimensions, D ,  the corresponding ‘radial’ propagator for the free motion, has the form of 
a reflectionless potential propagator. a property which allows simplifications in the explicit 
form of the radial propagator. 

The potential problem on E!:) which was studied, we called ‘Kepler problem’ on 
E!:’ due to its general structure in terms of the coordinates of the embedding space. The 
corresponding path integral could be reduced to a known path-integral solution, namely 
of the path integral for the Rosen-Morse potential. However, as we saw, it cannot be 
interpreted as a genuine Coulomb problem as known from the other spaces of constant 
curvature because it is not singular, it is the solution of the homogeneous Laplace equation 
(and not of the inhomogeneous one), and the flat-space limit does not make sense. 

In section 4 we discussed the case of constant magnetic field on the two-dimensional 
single-sheeted hyperboloid. Here, another path-integral identity came into play, i.e. the path- 
integral solution from a specific form of a Scarf-like potential, respectively a hyperbolic 
barrier potential. 

In all our problems, free motion, the ‘Kepler problem’, and the constant magnetic field, 
we could observe a nice interplay between motion in spaces of constant curvature on the one 
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hand, and potential problems emerging from them by separating the angular variables on the 
other. This feature is also well known from other realizations of (real) Lobachevskian spaces 
Ill ,  14, 321. It has its origin in the underlying group structure of the space in question, 
respectively the corresponding dynamical group of the potential problem [33, 341, where the 
most well known example is the Hydrogen atom in flat with its O(4) symmetry. The pseudo- 
bispherical coordinates coming from the SO(1, D - 1) group structure of 715;) allow the 
separation of the angular variables due to SO(m, n)  3 SO(m)  x SO@), and the remaining 
path radial- (i.e. r-) path integration can be transformed into a SLI(1, 1) path integration. 

From the present model no quantum-mechanical discussion seems to have been made 
until now, an operator approach as well as a path-integral approach. The solution of path 
integration on 71!;', together with the potential problem and the case of a magnetic field. 
has in comparison to an operator approach the advantage of presenting a global picture 
of the quantum theory in question, whereas the Schrodinger approach allows only a local 
one, and the explicit form of the Feynman kernel gives the complete solution in terms of 
the wavefunctions and the energy spectrum, respectively. The examples demonstrate, once 
more, the consistency as well as the universal utility and feasibility of the Feynman path 
integral and of our general method developed in [20]. 
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Appendix 

In this appendix we cite a path-integral identity important for the discussion in the text. 
Let us consider quantum-mechanical models related to the modified Poschl-Teller (mm) 
potential 

which has a (hidden) SLI(1, 1) symmetry. The path-integral solution is due to [lo, 351 and 
has the form (we use the notation of [361 for the bound and continuous states, respectively, 
k1 = $(I f v) .  kz = 1(1 zk v ) ,  for the explicit form of the Green function compare [28,29]) 

x(coshr'coshr")-("-") ( tanh r' tanh rn)ml+mz+l'Z 

- L,+ml, L, +ml + 1: m, - m2 + 1; - 
cosh' r< 
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(mi.2 = $(v i - / E ,  L, = $(I - U). The correct signs depend on the boundary 
conditions for r + 0 and r 4 00, respectively. Here we have introduced the Green 
function 

(H the Hamiltonian) where a small positive imaginary part ( E  > 0) has been added to the 
energy E. (We shall not explicitly write the if, but will tacitly assume that the various 
expressions are regularized according to this rule). The bound-state wavefunctions are, e.g., 
given by ( K  = k i  - k2 - n )  

x(sinh r)"z-i/z(cosh 

zFt(-kt + kz + K ,  -ki + kz - K + 1; 2kz; - sinhZ r )  

2(k1 - kz - n) - 1 

Here is n = 0,1, . . . , Nm c ki - kz - $, with N M  the maximum number of bound states. 
The continuous states have the form [ K  = $(l + ip)] 

'bb (krb)(r) = N['>.kd(cosh P r)X-%-'/2 (sinh r)">-'fl 

xzFi(ki + k z  - K. kz - kl - K + 1; 2 k z ;  tanh2s) 

'/z 
xr(k1 + kz + K - I)r(-ki + kz - K + l)] (4 

and Ep = hzp2/2m. Here the functions zFt(a,b; c ; z )  (z E C) denote hypergeometric 
functions. 

Of particular importance is the following special case, where a path integral solution 
according to [ I I ,  28, 371 has the form (n = 0, l . .  . . , N M  c I - $ , I  > 0, x E E): 

x P I I F '  (tanh x < )  P i p  (- tanh x,) 
n- l+ i /z  n-I+I/Z 

1 r(21 - n) P,-1/2 (tanhx')P,-llz (tanhx") 
2 ) n !  

dppsinh n p  

-h2(n - I + i )2/2m - E 
= - q n - i - -  

+' j  
ll=O 

2 -m hzp2/2m - E cosZzl + sinh'np 

Here the P t ( x )  are Legendre functions of the first kind. 
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