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On the path integral in imaginary Lobachevsky space
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Germany
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Abstract. The path integral on the single-sheeted hyperboloid, i.e. in D-dimensional imaginary
Lobachevsky space, is evaluated, A potential problem which we call the ‘Kepler problem’, and
the case of 2 constant magnetic field are also discussed.

1. Introduction

Motion on spaces with constant curvature, positive as well as negative, is of particular
interest and appears in several topics in theoretical physics. Let us, for example, mention
string theory where the perturbative expansion 2 la Polyakov [1] leads to the consideration
of determinants of Laplacians on Riemann surfaces of arbitrary genus, a theory where
the underlying space is the Poincaré, respectively Lobachevsky space, a space of constant
negative curvature,

Another example is the Kepler problem in spaces of constant curvature [2, 3]. Here one
is interested in the comparison of the symmetry properties of this problem, where one finds,
for example, that the coordinate systems which separate the Kepler problem in spaces of
constant curvature are only two, namely the (pseudo-) spherical and the {pseudo-) conical,
whereas in flat space there are four {4].

The evaluations of propagators and its short-time behaviour, and Green functions are also
important in cosmological models (cf e.g. [5]). They appear in several models derived from
the Wheeler-DeWitt equation and quantum gravity, respectively, and lead in a natural way
to models, respectively spaces, with constant curvature. As the simplest case, one can study
the free motion in these spaces. Here, several models can appear in the case of constant
negative curvature: the single-sheeted and the two-sheeted hyperboloid. Most simply,
they are studied in the two-dimensional case. The two-sheeted hyperboloid is a particular
realization of the Poincaré plane, where only one sheet has been taken, whereas the single-
sheeted has different properties and has not been studied in such great detail. However, some
contributions exist, mainly by Gel’fand, Graev and Vilenkin who call this space imaginary
Lobachevsky space [6-8] and have studied its geometrical structure and group-theoretical
properties. It has the peculiarity that the distance r of two points defined by cosh kr (k is the
curvature) may be positive gnd imaginary because cosh&r € [0, c0), ie. it is a space-like
set, in comparison to the usual two-sheeted hyperboloid, also called ‘pseudosphere’, which
is a time-like set. From the point of view of special relativity, Lobachevskian models are of
interest because the velocity space, say, possesses a constant negative curvature (equal to
1/¢?), and the single-sheeted hyperboloid in particular corresponds to the unphysical region
of the variables.
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In this paper I want to study the path mtegra] on the (D — 1)-dimensional single-sheeted
hyperboloid, denoted in the following by ’H_, which is done in section 2. This special
system was not subject to path integration until now, The path integral on the pseudosphere
has been intensively studied in [3,9-11], with its h1gher—d1mens:onal gencrahzat:ons m
[13, 14]. In comparison to this usual pseudosphere we will find that in the case of ’H
bound states can appear, depending on the angular-momentum number, which is not p0551b1e
for the quantum motion on the pseudosphere.

As we will see in section 3, a potential problem on the single-sheeted hyperboloid can
be discussed, which will be called the ‘Kepler problem’ on T.hc smgle-sheeted hyperboloid.

In section 4, the case of a constant magnetic field on ’H Y will be discussed, section
5 contains some concluding remarks, and in the appendix the pat.h integral identity for the
modified Péschl-Teller potential is given.

2. The path integral

For simplicity we first consider the simplest case, i.e. D = 3. We start with the equation
for the two-dimensional single-sheeted hyperboloid ’H(fl) (I/k=R>0)

(x, z) = x¢ — x} — x5 = —R%, 8)]
We introduce pseudo-spherical polar coordinates on ’H(_Bg
Xg = Rsinht x; = Rcoshrsing xy = Rcoshtcosg (2)

where T € (—00,00) and ¢ € [0, 2:1') The addition theorem on the single-sheeted
hyperboloid 'Hf_% has the form {x,y € H' ,)

Ty + L2
—_— 3
l21] |2 @

= (sinh 7; sinh Ty — cosh 1) cosh T3 cos(gs — 1)) . 4)

coshkr =

We find for the metric: (gqs) = Rdiag(l, —cosh® 7), and therefore g = /[det(gq)] =
R?cosh r. According to the canonical formalism [14-20] we construct the path integral on
'Hf? as follows (T =1t" —t'):

KCH l)(xl’xlsxzstvasxSy ) K(Hq)(r” t ¢” ¢ T)
x()=x) 0a(")=x xE)=x{

= f Dx,(t) f Daxa(f) f Dxs(t) exp [iz-h’f- [ i (x,z—-scg—xg)drjl )

ni=x  nE=x wBb=xg

1 mRz NN=1 pco 2z
— I h ¢;dt; de;
— 27 Jim (ZJreh) gf“wcos 7 f;j; ®;

. N 2 2
1 mR —— ch 1
_.z —( A2r; —cosh ;A2 ) — 1
xe"p{h £ [ Ze ( oo ¢1) stZ( +cosh2r,)“

(6)
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1 T("=t" P(t")=¢"
== f cosh Dz (t) f Da(t)
=1 (1 M=¢"

i Tm o, 2 s h? L
xexp{gﬁ [ER (r —cosh r¢:) _8mRz(l+cosh2r)] dey .
)

Here ate ¢ = T/N, g; = g(t' + je), F2(q;) = flg;)f(g;-1) for any function of the
coordinates  and ¢, and j = 0,...,N, Ag; = g; — g;—, and we interpret the limit
N — oo as equivalent with ¢ — 0, T fixed. Note that due to the indefinite metric the
factors ‘i’ in the ‘measure term’ cancel each other [10). The corresponding shori-time
propagator is given by

(3} m
KM, 1521, ¢, iy €) = cosh z;
(J' j=1 4’; ¢‘1 1: €) Yreh J

mR*; €h? 1
xexplﬁ [ 5 (A T — Gosh” A qb]) SmRZ(I + COShzt:f)]} ¢

Note that the pre-exponential factor does not depend on R. The ¢-path integration can be
separated [22] immediately and we obtain

—iRT /Bm B2 o0 LY —¢") @)

(3) ] [ (H3)
KHD(" o, ¢", ¢ T) = E A A A 9
( o1 ( —cosht’coshr”)/2 = 2w R2 ' ( ) @

. HED .y o, :
with K, (t”, ©'; T) given by

1.'(! "=t"

3 2 12 w1
K[M_:)(r”i 7)) = Dz(t)exp [ f [ h 4 :| dt} (10)
If

2m R?%cosh’t
r(z')—t’

which is a usual one-dimensional path integral. This path integral has the form of the
special case of the modified Poschl-Teller potential as sketched in the appendix. Therefore,
we can write down the solution of the path integral on the single-sheeted hyperboloid
(n=0,1,..., Ny < ll| — 3

Il T(t")=1" (" )=g"
L [T aydren f cosh 2DZ(2) f Dp (1)
o
{t)=1" Pt )=¢
i I m . hz 1
X exp { — — RHt? — cosh® 1¢%) — 1 de
P{h_/; [2 ( 9 " s\ st ¢
lf(¢"—¢'}

o
= (— cosh ' cosht”)~ vz Z

l=—r0

m 2mR? E 1 1 2mR E

XEEF “ﬁ_ - ]”'i"- r 72 + = +”|+—
W P —uf —2mRLE fR* +z |'1‘5'<).P —af —2mRLE [ +xi(—tanh1:>) (1n

17—

-4



3478 C Grosche

o oill"—#)
= { — cosh r’ coshz")~1/2 e~
( Y S

=jii+4 =)+
3 %(n_m_ 1yraton Picy G e) Py anh )
"= 2] nt R =M+ )P - g1/ 2mR —

lp 73 -]
N 1 foc dp psinhxp Pm_‘!2 (tanh 7’ }Pm”’% {tanh ')
2 S B2+ 1/8)2mR2 — E  cos?wml + sinh®mp

(12)

Wavefunctions and the energy spectrum are easily read off from the spectral expansion (12).
Note that for ! # O there are bound states. The generalization to higher dimensions can be
done in a straightforward way, by replacing the circular wavefunctions by the hyperspherical
harmonics S} (£2), and the quantum number ! € Z by the corresponding principle quantum
number ! € Ny, including the appropriate changes in the effective Lagrangian, and with
the prefactor replaced by R'~?. In order to to this we introduce the (pseudo-bispherical)
coordinate system [6-9]

Xo = Rsinhv
x1 = RcoshTcosfp_z
= Rcoshtsin8p_acosfp_z

(13}

Xp_p = Rcoshtsinfp_3...c0s6;cos¢
Xxp—) = Rcoshrsindp_y...cosd; sing

where T € (~00,00), 61 = ¢ € [0,2x), and 6; € [0,7), k = 2,..., D =2 The
metric tensor on the (D — 1) cllmensmnal single-sheeted hyperboloid is given by: (gg)} =
Rdiag(1, —cosh? 7, — cosh? 7sin?6p_3, ..., —cosh® T .. .sin’ ) (a,b = 1,...,D — ).
Therefore, we obtain for the Hamiltonian on H L: )

H = A’ i + (D —2)tanh ri} - ;[ Gl + (D — 3} cothd S :I
= 2mR?|| 912 dr] cosh’t | 8683 , P 862
1 32}
o 14
cosh®7 .. .sin% @, 0¢ (1)
__1! o — 1 2 Y p2:|+AV(1' {81

2mR2 |77 cosh?r’ 9 coshZt...sin%8 * ’

(13)

with the quantum potential

2
AV(r, [8) = B [(D-2)2+ ! ! (16)

Fop——— .
8mR? osh? 7 cosh?t...sin? 82]

({6} denotes the set of variables 6 (k = 1,..., D —2).) Furthermore, (g = det(gap) =
cosh?~2 7 [12- M sin 6)%1),

Fl a T d lo:
pa= n ) r, = 2088 an
aq dge
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Thus we obtain for the (Lagrangian) path integral on H‘_ﬁn (= (x0,...,%Xp=1))s

KMD@!, 2, T) = KHD @, 7,107, (0% T)

(" y=xf

=if[' f kacz)exp[ f:’(xo DZ )]

_ka(t'):x,c
r('ll)=rll ' Q(["):Q"

- f cosh®~2 ¢Dz(r) f DS2(1)
T{t)=1' QU=

x €xp {% f [£a 1. 6), 6D - aver, {e})]}

R? (N/2W D=2} imR2 (NI N=1 poo
=R"? |im {2 f hP-2¢,d ‘fdQ'
Nl-ﬁo(?.zrieh 2nhe E p o /

.ON
x exp [ NP ICREN R NCHETINTCR {9,-})]] : (8)

=
L is the classical Lagrangian

2

Lar, t,{6), {6) = mf [f2 — cosh? 762 _, — -+ — (cosh? 7 ...sinzﬁg)zj}z] (19)

and its counterpart on the lattice reads

‘Cg](rj—lsfp{aj ih {8h
mRZ N _,.f-;__ ,__-—2.__ _,.2._.__ )
= [A T, —cosh> ; A%9p 5 ; — -~ — (cosh® 7; .. .5in" 82 ;) A ¢j].

262
(20)

d2 = I'[ (sm 6:)Y=1dd, is the (D - 2)-dimensional surface element on the unit-sphere
s, Note again that the pre-exponential factor in the short-time kernel does not depend
on R.

Due to the very singular nature of AV (r, {#}) this path integral is, as it stands, not
tractable. However, we can use a path-integral identity (based on a method developed
in [17, 18]) already derived in [13, 20] to simplify the path integration significantly and
separate the angular variables 8p_s, ..., ¢ from the hyperbolic coordinate 7. I introduce
the quantity ¥ defined by

D=3 D=2 D=2
cos Y = cos @) _, cos@l_, + Zcosa cosé,, I-[ sind, sing, + l_[sme’ sin g,
m=1 n=t1+1 a=1

21

which is actuaily the addition theorem on the §¢°~2-sphere and cos ¥ (" = Q' . ", where
Q0" are unit vectors on the S®—2_sphere. Using the result of [20) the following path-
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integral identity can be achieved (replace R? = ;r-j2 = —cosh® 7; in (2.27) in [20])

——

imR? —~ _ —
eXp { _ 26?1 CDShZ Tj [Azgp_z'j + e+ (Sll‘l2 ap_z'j Ve Siﬂ2 92'})A2¢j]}

imR? —5~
= exp[— = cosh? 7;(1 — cos ¥y_1,;)

ieh 1 1
T ImR cost? 7 (I e 8p-s.; Tt e 8p_z...sin’ 92,1)] @
Here I have used the symbol =—following DeWitt [16)—to denote ‘equivalence as far as
use in the path integral is concerned’. The highly singular terms cancel and I obtain
. T{t")=1" Q="
EHD (", ¢, 0"}, (8'}; T) = R\-P f cosh?~2 7 Dz (?) f D)
7()=1' 2y=5r

mR: (Y1, ’ hT(D —2)
xcxp{T[’ [’r — 2cosh r(l-—cosr,lr)] iyt X))

Now expanding the exponential according to {22, p 930],

groos ™ ( ) r(v)Z(Hv)C, (o8 #) f02) 24)

where C}'(x) is a Gegenbauer polynomxal together with [23, chapter XI]

M
1 20+D-2 "
B ey G LY (D-2)/2 [
#E—l S (9 )S, (2N %D) D2 o (cosy* ') (25}

where the S“(SZ) are the real hyper-spherical harmonics of degree ! with unit vector £ on
the S‘D‘”-sphere ! € Ny, Q(D) 2722 T(D/2) is the volume of the D-dimensional
unit-sphere SV and u=1,..., M, M = 21+ D = 2)(I + D — 3)!/1(D — 3)1. Thus
for v = (D —3)/2 in (24), i.e. on S(D‘z’

o 2ar (D~3)f2 00 M
e oo (E) S S S @OF @hon@. 09

=0 p=1
The angular vanables in the path integral on the (D — 1)-dimensional single-shected
hyperboloid ’H{ can be therefore separated in a straightforward way and we obtain

K™D 2, (8", 46'} T)
Rl—D
~ (—cosh t/ cosh T7)(P-2/2

oo M
xZZSj‘(Q’)sf‘(sz")exp[ Rz(D 2)2} DTy @)

I=0 p=t

and KX, e )(r" t'; T) is given by

‘H
K( -1 )( ﬂ, ,l; T)
T{t")=1

i lm o, B 4+ (D=3 -1
= f Dr(z)expl?—l L [—2—72212+ T — dt

{ti=1’
(28)
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Therefore one obtains similarly as before (£ = E — R%(D — 2)2/8mR?)

i e B (D)
Efﬂ dr e TER g H)(fg"), (9}, 7, 5 T)
= ln(I_DmF((D - 1)/2)R3‘D( — gosh 7’ cosh ¢y~ P-242

zl + D 3 U
) tZO:D_BCf(D Y2 (cos ")

D-4 - D—2
x%l"( —2mR2E/h—i—---2—-—)I‘( —2mRE B+ |+ ““z_)

PR ER (anh ) P, (tanh . . (29)

Letusset D =2d+4 withd =0, I,.... Then ((+(D — 3)/2)—} = (+ad)[(I+d)+1] and
we see that in this case the radial propagator on ’H(_Dl) yields the propagator of a reflectionless
potential [25]. Hence, we can explicitly state for the propagator (N =/ +d)

K"} 10,7, T)
RI—-D oo M

i eyt ik "
y(D=2)/2 ;Z Sy ()57 (RQ7)

= i D —2)?
A5 s (-~ 2]

n=0
(2N —a)!

X (N — n)—P” =N (tanh 7"} P~ (tanh £")

*® dpp BT [, (D-2)?
+[_m2sinhnpexP[ ngz(P + 4

x Py 7 (tanht") Py’ (tanh z:”)] (30)

(—cosh 7’ cosh 7

La=DV2r((D — 1)/2)R'~P( — cosh 7’ cosh )~ P2/

Z2+D-=3 (D-3)/2 oh mR? o N
X3 b3 G ©os¥) VerlhTexP T )

1=

=0
15 i (D —2)
+3 258 (-t - 57|

n—O
= a2 e

inT . mR?
xl:erf( —2mR2(N—n)—(1: ") ZlhT)

T L [mR2
-I—el'f( m(N—n)-[—(r 1.') ZIﬁT)]} (31)
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where in the resummation use has been made of the integral representations [22, p 497],
RB. Ry >0,a>0:

LN ] PO -a -2 e 4
= 4ey[251nhay+e "erf(y B 2../3) eyerf(yﬁ+2ﬁ)]

® dx
f 5 2e"a"z cosax
0 Y +=x

='%e‘5"2 |:2coshay - e“’”erf(’y - %ﬁ—) - ‘“’erf(y,/ﬁ + ;ﬁ)] .

For the radial Green’s function, respectively, I obtain

I e . AD)
= f dT eTER K0, o T)

B Jo
1 m v o N—2mR*E
=— /——exp| — |t — | ——
nY 2E h

130 N =m@N =)
9 — P pa— 1"
T2 t —p*(N —m)?/2mR2 — En!PN (tanh ) Py~ (tanh )
_ = 7
X lﬁ(l_M)COSh [T-'”—?."' N--n-l— 2mR*E '
—-2mRE 5
(32)
Here use has been made of the Laplace-Fourier transformations {25, p 177]:
" e L (B _ expl=yaB — /7B)
dee“=Perfe | Vat + -‘/: — . a3
f° ( i) JFWP+VA) )

Equation (30) represents the spectral expansion, where wavefunctions and energy spectra
can he read off.

3. The ‘Kepler problem’

In the path integral (28) the following potential on ’HE_‘?} is easily incorporated:

2 2
V(r):—-qT (%) ~1 (34)
_.z
= Rtanht (35

where 2 = Y27 x2 > R For D = 4 (34) has the structure of a Kepler problem in a
space of constant curvature {2, 3]. In our case of the single-sheeted hyperboloid we want
to keep this notion for every dimension D, and we will see that a similar structure familiar
from the usual Coulomb problem in the energy spectrum will in fact arise, however, with
some significant different features. Furthermore, the potential (33) is not singular for any

value of T € R,
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Implementing the potential (35) in the radial path integral (28) yields
("M)=" "
@y s i lm oy, R A+3D-3)-1
' T) = D - i
K7, T f r(t)exP.{hf,. {er +2mR2

cosh® ¢
T{t)=1’
g
+ —tanhv |dt; . (36)
R
Equation (36) has the form of the path integral for the Rosen-Motse potential
B x
Vix) = ———— 4 Atanh — 37
@ cosh’x/R R G7

(A, B, R constants, x € R) which has been discussed in [27, 28] by means of the path
integral of the modified Péschl-Teller potential, cf the appendix. Identifying

2 2
g q(£+2(o 22—t X
A=-L B= _x
R ImR? "SR

gives the path integral solution

(38)

. " T(M=tr"
1 .
- f dreTEA f Dr(t)
0
T()=7'

i m o, I+iD-3))* -1 42
- — R} ypr 2 2+ tanhr|dt
xexp{ﬁﬁ [2 His 2mR2 cosh? T + R i

_ mR* T(my—Lp)(Lg+m +1)
ht Tm+ma+ DINmy —ma + 1)
X(l —tanh7’ 1- :anhr”)‘”"""ﬂ/z(l +tanht’ 1+ tanh r”)(’"""’"”/z

2 T2 2 2

nh
XZFI('—LB'[‘m!sLB“"’m]+I;m[+m2+1;'l—“+_t;i)

} —tanh T
XzFl(—L3+m;,LB+m1+1:m1—mz+1:———2—<) (39)
Ny \p(q y* 7' q,(q) o lI-’(qJ*(I")\[J@) -

_Z E ) ( ) /' dp o ( ) “0)
Eq Eq —F

r=0

Here are Ly = I+ (D —4)/2, my 3 = MR(J—qzjk —E+./7% R - E)/h, and 7. »
the smaller/ larger of 7', 1%, respectively. The wavefunctions and the energy-spectrum are
givenby (s =204+ D -3, n=0,...,Ny <! +(D—4)/2~ /Rja with @ = h%/mg?
the Bohr radius, k; = 5(1 + s), kr = £[1+ 3(s — 2n — 1) — 2mg*R/(R(s — 2n — 1)}],
K= —(I + tanh £}, note ky — — - O)

W) = [(1 dmg? ) (s = 2ky — 2m)nt T'(s — n) ]‘fz
R BMs—2n—12/D(s+ 1 —n—2k)T(2k2 + 1)
x2"HI=9/(1 — tanh £)# % (1 4 tanh )
x PE~#a=212=N (1anh 1) (41)
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E@ . _ [hz (+ 5(D—4)—n)? mq* ]
nl =

2mR* 221 ~1~ 3D~ 4 “

The wavefunctions and the energy-spectrum of the continuous states are given by (k2 =
L0 +ip) k =10 +ip), 5= V2mRY=2¢%/R + W p2/2mR?)/h > 0)
WO (x) = Nk — )~ io2y 50

Xa P {31+ s +i(F = p)], 3[1 = s +i( ~ p)]i 1 +i; u} (43)
1 psinhwp
N(kl.h) = ko — —
py I‘(Zkz)'\’ = [T(kl +kz — )T (k) + k2 + &)
. 12
Tkt + kg + & = DT (=1 4k — & + 1)] 44)
h2p2 qz
Eri=gm R @

In the limit g% = O the case of (30?) is easily recovered. Note that for the entire problem
the additional ‘zero-energy’ shift ES” = #%(D —2)?/8mR? has to be taken into account, cf
(27). We see that the energy spectrum (42) of the ‘Kepler problem’ on the single-sheeted
hyperboloid has, in fact, a form familiar from the usual Coulomb problem in flat space,
and in spaces of (positive and negative) constant curvature [2, 3], respectively. However,
in the present example the flat space limit (R — ©0) does not make any sense, and the
corresponding Hilbert space does not exist.

4. The constant magnetic field

Let us introduce on H?} the vector-potential .4
A= (A, Ay) =iBsinhz(0,1). {(46)
The magnetic field is thus calculated to read as dB = (3:Ay — GpAr)dT A dop =

iR coshtdr A d¢p = B ./det{g.,) which has the form (constant % volume)-form and can

therefore be interpreted as a constant field on ’Hg} Note the imaginary unit involved in A
which is due to the indefinite metric of ’H(_I;). The path integral with the vector potential 4
then has the form (b = eB fhc):

K(’Ht_a:,b] (T”, TI, ¢H’ ¢!; T)
1 mR*\N A5l oo 2
=—li cosh 7;dz; de;
20 (mes) 11 [ oo [

. N 2
i mR — 2
X eXp [E 21 [ﬁ(Azrj — cosh rjA2¢j)
j:

ihb Sinht; Ag; — i 14— (47)
TV 8mR? cosh? 7;
. @¢N=1" Pl )=g" R
= cosh zDz(f) f Do (¢) exp [% '/; [% R? (12-2 — cosh? téz)
T{r')=r' H{t)=¢"

o B 1
—iftbsinhtgp — " (1 + cosh? r)]dt] . (48)
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We perform a Fourier expansion according to

CH':_S‘;"b) Wo_F i f. _ 1 - ' 7" -7z
K (r,r,q&,qb,’[’)—z?rRz( cosht coshr)
iRT 5 1 0 (" —¢) HEB .
xexp[_.._(b +_)] =) g PP o 1y “9)
2mR? 4 [_Zw
K[('H‘.l b}( "ol T = _f d¢ne—1!(¢ —g' )K’(HCBJ b)(rrr' ' ¢.rr. qb’; T) . (50

M )(T) is given by

We therefore obtain that the radial kernel K,
T(t"=o"

(3}
KO o Ty = f D)

(=1’

i g m 22 h?. lz_l_bz___l_
xexp{h_/; [ER T +2mR2( Coshz + lb—'}; dt (SI)

which is the path integral of a barrier tunnelling potential V(x) = (h*/2m)(A + B tanh x/
cosh x + C tanh? x) as discussed in [29] (compare [30] for a detailed study of reflection and
scattering properties) and belongs to a class of potentials called Scarf-like potentials [31].
We perform the coordinate transformation (1 4 isinh 7)/2 = cosh? z and obtain (M = 4m):

2tM=z"

(HE.8) f f Mo I (C_iB C+i3)]
K @ o T Dz(r T B ‘
p Tt T)— z(¢) exp [ nt |2 2% 2M \ sinh®z  cosh?z ’

z(rf) z}
1 —iTE,
-3{%

. O
+ dP B—ITEP /f.l b)*( )‘IJ(H-I b)( ﬂ')] . (52)
—00
‘We do not worry about the fact that this is a complex-coordinate transformation (compare
also [2] in the treatment of the Kepler problem in a space of constant positive curvature,
where an even more complicated coordinate transformation has been made, accompanied
by an additional time-transformation). Due to the specific nature of the vector potential we
have chosen, the latter path integral is a usual one-dimensional path integral with a real
potential eg CEiB=(xb—1) Here by =11+, /C+iB+1y=10+1+8D,

(I + {{ — b|) in the notation of the appendix (the correct signs of the square roots
follow from the vanishing of the bound state wavefuncnons for x —» =£00). Therefore we
obtain for the energy spectrum for the motion H‘,l with a constant magnetic field

2
EHAD 2hR2[i+b2 (L= L4 o]+ A — b|)2]. 53)
Wehaven =0,1,2,... , Ny < i(ll—i—b[ — |{ = b} — 1). For the bound-state wavefunctions
we get (reinserting z — 1)
B Ly [(lz +b— |l —bl—n— DT+ 5] - n)] m(isinh T — 1)‘”2““"""”2
i+ —I=bl—nm({—b|+n+1) 2
(i sinht + 1)(1’ 2-l+bh/2
sef — = 1T °
2

_: }/ﬁlp(']{_ b)*( ,)\p(ﬂ_] b)( ”)

PU=BL=IEBD (; ginh 1) (54)
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and the P (z), z € C, are Jacobi polynomials.
Rescaling the parameter p according to p — 2p in the p-integral for the continuous
states we get for the continuous spectrum

£ _ K?
P T 2mR?

and the wavefunctions have the form

JpsinhZxp

xl(1+ |l = bl)
x\r[%(l F L= b+ b)) —ipP [0+ = b~ 1 + 8]~ ip]|

(isinhr+1 (/2HU=BD/2 i oinp ¢ 1\ P~ U/2HI-B)/2
x| ——— .
2 ) ( 2 )

1
pr+bt+ Z) (55)

(H™ 5
‘pﬁ.! ! (T) =

1
XZFI[E(I + =B+ Il +b])

] . isinhr —1
=ip, (L V= bl = 4 b)) —ipi 1+ 1L = b o 1]‘ oo

5. Summary and discussion

In this paper I have studied path integration on the (D — 1)-dimensional single-sheeted
hyperboloid in a conveniently chosen coordinate system of (I, D — 1)-dimensional pseudo-
bispherical polar coordinates: first the two-dimensional, second its higher-dimensional
generalization, third a potential problem, and finally the case of a constant magnetic field.
In all cases the propagators, the Green functions, and the corresponding wavefunctions and
energy spectra could be easily determined by the formalism. We found that in comparison to
the (two-sheeted) pseudosphere, bound states are already allowed for the free motion on the
single-sheeted hyperboloid, where the number of bound states is determined by the angular-
momentum number. Similarly, as in the case of the pseudosphere [13], the hyperbolic
plane with magnetic fields [32], and other hyperbolic spaces [14], a ‘zero-energy’ shift
E® = n¥(D — 2)2/8mR? appeared in the energy spectra. We also found that in even
dimensions, D, the corresponding ‘radial’ propagator for the free motion, has the form of
a reftectionless potential propagator, a property which allows simpiifications in the explicit
form of the radial propagator.

The potential problem on H(_?) which was studied, we called ‘Kepler problem’ on

’H(_Dl) due to its general structure in terms of the coordinates of the embedding space. The
corresponding path integral could be reduced to a known path-integral solution, namely
of the path integral for the Rosen~Morse potential. However, as we saw, it cannot be
interpreted as a genuine Coulomb problem as known from the other spaces of constant
curvature because it is not singular, it is the solution of the homogeneous Laplace equation
{and not of the inhomogeneous one), and the fiat-space limit does not make sense.

In section 4 we discussed the case of constant magnetic field on the two-dimensional
single-sheeted hyperboloid. Here, ancther path-integral identity came into play, i.e. the path-
integral solution from a specific form of a Scarf-like potential, respectively a hyperbolic
barrier potential.

In all our problems, free motion, the ‘Kepler problem’, and the constant magnetic field,
we could observe a nice interplay between motion in spaces of constant curvature on the one
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hand, and potential problems emerging from them by separating the angular variables on the
other. This feature is also well known from other realizations of (real) Lobachevskian spaces
[11, 14, 32]. It has its origin in the underlying group structure of the space in question,
respectively the corresponding dynamical group of the potential problem [33, 34], where the
most well known example is the Hydrogen atom in flat with its 0 (4) symmetry. The pseudo-
bispherical coordinates coming from the SO(1, D — 1) group structure of 'H(ﬂ) allow the
separation of the angular variables due to 5O(m, n) > SO(m) x SO(n), and the remaining
path radial- (i.e. T-) path integration can be transformed into a SU(I, 1) path integration.

From the present model no quantum-mechanical discussion seems to have been made
until now, an operator approach as well as a path-integral approach. The solution of path
integration on 'H(_B;), together with the potential problem and the case of a magnetic field,
has in comparison to an operator approach the advantage of presenting a global picture
of the quantum theory in question, whereas the Schrédinger approach allows only a local
one, and the explicit form of the Feynman kernel gives the complete solution in terms of
the wavefunctions and the energy spectrum, respectively, The examples demonstrate, once
more, the consistency as well as the universal utility and feasibility of the Feynman path
integral and of our general method developed in [20].
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Appendix

In this appendix we cite a path-integral identity important for the discussion in the text.
Let us consider quantum-mechanical models related to the modified Péschl-Teller (mPT)
potential

yomey = o (12 s_ Y3 r>0 (A1)
~ 2m \sinh®t  cosh®t

which has a (hidden) SU/(1, 1) symmetry. The path-integral solution is due to [10, 35] and
has the form {we use the notation of [36] for the bound and continuous states, respectively,
k= %(I Tvh k= %(I =+ 5), for the explicit form of the Green function compare [28, 29])

(=" .
P ifrim B (P—5 v
- dr ‘””‘fD t)ex —f _,-,2__(_4_ 4) dr
nfo € riexe s | 12" T 2m\sabEr  coshir
ri)=r
_m_ T — LMLy +mi +1)
RET(my +mo+ )P(my —ma+ 1)

x (cosh ' cosh ") —(m,-m;)( tanh 7’ tanh r")

my+ma+Ef2

1
X2FI(_Lu+miva+ml+l;ml_mZ'I‘l; 5 )
cosh” r.

Xze(—Lu+ma,Lu+m1+1;m1+mz+1;tanh2r>) (A2)

(A3)

Ny q,,(l.kl ,kg)s(rr)‘ygk, ,kz}(rﬂ') foo q";(fkl Kka2) *(rf)q_,‘(’h .k:)(ru)
4]

& E-E W p/2m — E
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(miz2 = 3(n £ =2mE/h, Ly = 4(1 — v). The correct signs depend on the boundary

conditions for ¥ — 0 and r — oo, respectively. Here we have introduced the Green
function

i poo
6" g5 B) = fo dT SEHTRK (g, 45 T) = (q”

—_—l Ad
H-E—ie|’ ) a4)
(H the Hamiltonian) where a small positive imaginary part (¢ > 0) has been added to the
energy E. (We shall not explicitly write the i€, but will tacitly assume that the various
expressions are regularized according to this rule), The bound-state wavefunctions are, e.g.,
given by (k =k — ka — 1)

Wl (py =~ L_[20K = DTG +ka = K0 +kp bk = 1):]”2
" T'(2ks) Tk —ky + )Tk —ky ~ & + 1)
x (sinh T)#~1/2(cosh 7)~ 1372
2Fy(~k1 + ko + ke, —ky + k2 — & + 1; 2ky; — sinh® 7) (A5)
B 2
E,=—— [2(k; —ky—n)— 1] . (A6)
2m
Hereisn=0,1,... , Nu <ki —kg — % with Ny the maximum number of bound states.

The continuous states have the form [ = (1 +ip)]

1[!{,"""’} (r) = Ng"’ *)(cosh £)* 212 (ginh )P -1/2

XgFi(ky + ks — 1, ky — ky — & + 1; 2kp; tanh® 1) (A7)
1 psinhap
hiokey _ _
12
XTIk + & + & — DT(=ky + by — & + 1)] (A8)

and E, = R*p?/2m. Here the functions 2Fi(a, b;e:z) (z € C) denote hypergeometric
functions.

Of particular importance is the following special case, where a path integral solution
according to [11, 28, 37] has the form (n =0,1,...,Ny <! — 1,1 >0, x € R).

x (’JJ)=xn

i i " (m At 12—
— | dTreTER f Dx (1) ex —f (..__,&2 + — 4 )dz‘
A fo Oexet 2 |\ 25 T omcos

x{t=x'

m 1 1 1 1
= el =/'—2mE — 2irf == d

?zzr(h mn !+2) (h 2mE+f+2)

x Py E ™ Gtanh x ) Py (— tanh x,.) (A9)

_ 3 (n I - .1.) DI - n) Py (tanhx’) P72 (tanh x")
2/ —Ri(n — 1+ 3)*/2m — E

n=0

oo i P, »(tanh x")P?, (tanh x”
+%f dp psinhmp £ ypl LIPS ). (A10)

—e0 B2p*2m — E cos? ! + sinh® wp
Here the P#(x) are Legendre functions of the first kind.
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